Male Reproductive System of the Human body.
Module 1 -
Medical Transcription Tutorials
Section IX - Male Reproductive System
Chapter I
What is biological reproduction?
Biological reproduction is the biological process by which new individual organisms are produced. Reproduction is a fundamental feature of all known life; each individual organism exists as the result of reproduction by an antecedent. The known methods of reproduction are broadly grouped into two main types: sexual and asexual reproduction.
In asexual reproduction, an individual can reproduce without involvement with another individual of that species. The division of a bacterial cell into two daughter cells is an example of asexual reproduction. Asexual reproduction is not, however, limited to single-celled organisms. Most plants have the ability to reproduce asexually.
Sexual reproduction requires the involvement of two individuals, typically one of each sex. Normal human reproduction is a common example of sexual reproduction. In general, more-complex organisms reproduce sexually while simpler, usually unicellular, organisms reproduce asexually.
Asexual reproduction
Asexual reproduction is the biological process by which an organism creates a genetically-similar or identical copy of itself without a contribution of genetic material from another individual. Bacteria divide asexually via binary fission; viruses take control of host cells to produce more viruses; Hydras (invertebrates of the order Hydroidea) and yeasts are able to reproduce by budding. These organisms do not have different sexes, and they are capable of "splitting" themselves into two or more individuals. Some 'asexual' species, like hydra and jellyfish, may also reproduce sexually. For instance, most plants are capable of vegetative reproduction—reproduction without seeds or spores—but can as well reproduce sexually. Likewise, bacteria may exchange genetic information by conjugation. Other ways of asexual reproduction include fragmentation and spore formation that involves only mitosis.
Sexual reproduction
Sexual reproduction is a biological process by which organisms create descendants that have a combination of genetic material contributed from two (usually) different members of the species. Each of two parent organisms contributes half of the offspring's genetic makeup by creating haploid gametes. Most organisms form two different types of gametes. In these anisogamous species, the two sexes are referred to as male (producing sperm or microspores) and female (producing ova or megaspores). In isogamous species the gametes are similar or identical in form, but may have separable properties and then may be given other different names.
Humans, most animals, and plants reproduce sexually. Sexually-reproducing organisms have two sets of genes for every trait (called alleles). Offspring inherit one allele for each trait from each parent, thereby ensuring that offspring have a combination of the parents' genes. Having two copies of every gene, only one of which is expressed, allows deleterious alleles to be masked, an advantage believed to have led to the evolutionary development of diploidy (Otto and Goldstein).
Mitosis and Meiosis
Mitosis and meiosis are an integral part of cell
division. Mitosis occurs in somatic cells, while
meiosis occurs in gametes.
Mitosis
The resultant number of cell in mitosis is twice the
number of original cells. The number of chromosomes
in the daughter cells is the same as that of the
parent cell.
Meiosis
The resultant number of cells is four times the
number of original cells. This results in cells with
half the number of chromosomes present in the parent
cell. A diploid cell forms two haploid cells. This
process occurs in two phases, meiosis I and meiosis
II.
Asexual vs. sexual reproduction
Organisms that reproduce through asexual
reproduction tend to grow in number exponentially.
However, because they rely on mutation for
variations in their DNA, all members of the species
have similar vulnerabilities. Organisms that
reproduce sexually yield a smaller amount of
offspring, but the large amount of variation in
their genes makes them less susceptible to disease.
Many organisms can reproduce sexually as well as
asexually. Aphids, slime molds, sea anemones and
many plants are examples. When environmental factors
are favorable, asexual reproduction is employed to
exploit suitable conditions for survival such as an
abundant food supply, adequate shelter, favorable
climate, disease, optimum pH or a proper mix of
other lifestyle requirements. Populations of these
organisms increase exponentially via asexual
reproductive strategies to take full advantage of
the rich supply resources.
When food sources have been depleted, the climate
becomes hostile, or individual survival is
jeopardized by some other adverse change in living
conditions, these organisms switch to sexual forms
of reproduction. Sexual reproduction ensures a
mixing of the gene pool of the species. The
variations found in offspring of sexual reproduction
allow some individuals to be better suited for
survival and provide a mechanism for selective
adaptation to occur. In addition, sexual
reproduction usually results in the formation of a
life stage that is able to endure the conditions
that threaten the offspring of an asexual parent.
Thus, seeds, spores, eggs, pupae, cysts or other
"over-wintering" stages of sexual reproduction
ensure the survival during unfavorable times and the
organism can "wait out" adverse situations until a
swing back to suitability occurs.